Undergraduate Teaching 2018-19

Engineering Tripos Part IB, 2P6: Linear Systems and Control, 2018-19

Engineering Tripos Part IB, 2P6: Linear Systems and Control, 2018-19

Not logged in. More information may be available... Login via Raven / direct.

PDF versionPDF version

Lecturer

Dr I Lestas

Timing and Structure

Weeks 1-4 and 7-8, 2 lectures/week. Weeks 5-6, 1 lecture/week. 14 lectures.

Aims

The aims of the course are to:

  • Introduce and motivate the use of feedback control systems.
  • Introduce analysis techniques for linear systems which are used in control, signal processing, communications, and other branches of engineering.
  • Introduce the specification, analysis and design of feedback control systems.
  • Extend the ideas and techniques learnt in the IA Mechanical Vibrations course.

Objectives

As specific objectives, by the end of the course students should be able to:

  • Develop and interpret block diagrams and transfer functions for simple systems.
  • Relate the time response of a system to its transfer function and/or its poles.
  • Understand the term 'stability', its definition, and its relation to the poles of a system.
  • Understand the term 'frequency response' (or 'harmonic response'), and its relation to the transfer function of a system.
  • Interpret Bode and Nyquist diagrams, and to sketch them for simple systems.
  • Understand the purpose of, and operation of, feedback systems.
  • Understand the purpose of proportional, integral, and derivative controller elements, and of velocity feedback.
  • Possess a basic knowledge of how controller elements may be implemented using operational amplifiers, software, or mechanical devices.
  • Apply Nyquist's stability theorem, to predict closed-loop stability from open-loop Nyquist or Bode diagrams.
  • Assess the quality of a given feedback system, as regards stability margins and attenuation of uncertainty, using open-loop Bode and Nyquist diagrams.

Content

 

Section numbers in books

 

(1)

(2)

(3)

Examples of feedback control systems. Use of block diagrams. Differential equation models. Meaning of 'Linear System'.

1.1-1.11, 2.2-2.3

1.1-1.3, 2.1-2.6.1

1.1-1.8, 3.1-3.5, 3.18

Review of Laplace transforms. Transfer functions. Poles (characteristic roots) and zeros. Impulse and step responses. Convolution integral. Block diagrams of complex systems.

2.4-2.6

3.1-3.2

3.8-3.14, 4.1-4.8, 6.1-6.2, 7.1-7.8

Definition of stability. Pole locations and stability. Pole locations and transient characteristics.

5.6, 6.1

3.3-3.4, 4.4.1

5.1-5.2, 6.4

Frequency response (harmonic response). Nyquist (polar) and Bode diagrams.

8.1-8.3

6.1

6.5, 11.2, 11.5, 15.1-15.5

Terminology of feedback systems. Use of feedback to reduce sensitivity. Disturbances and steady-state errors in feedback systems. Final value theorem.

4.1-4.2, 4.4-4.5

4.1

9.2, 9.5

Proportional, integral, and derivative control. Velocity (rate) feedback. Implementation of controllers in various technologies.

10.6, 12.6

4.2

 

Nyquist's stability theorem. Predicting closed-loop stability from open-loop Nyquist and Bode plots.

 9.1-9.3

 6.3

 11.10

Performance of feedback systems: Stability margins, speed of response, sensitivity reduction.

6.3,8.5, 9.4, 9.6, 12.5, 12.8-12.9

6.4, 6.6, 6.9

10.4, 11.11, 13.2, 15.6-15.7

 

REFERENCES

(1) DISTEFANO, J.J., STUBBERUD, A.R. & WILLIAMS, I.J. FEEDBACK AND CONTROL SYSTEMS
(2) FRANKLIN, G.F., POWELL; J.D. & EMAMI-NAEINI, A. FEEDBACK CONTROL OF DYNAMIC SYSTEMS
(3) OPPENHEIM, A.V., WILLSKY, A.S. & NAWAB, S.H. SIGNALS AND SYSTEMS
(4) ÅSTRÖM, K.J. & MURRAY, R.M. FEEDBACK SYSTEMS: AN INTRODUCTION FOR SCIENTISTS AND ENGINEERS
(5) DORF, R.C. & BISHOP, R.H. MODERN CONTROL SYSTEMS

Booklists

Please see the Booklist for Part IB Courses for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations.

UK-SPEC

This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.

 
Last modified: 17/05/2018 15:26

Back to Top