
Lecturer
Leader
Timing and Structure
16 Lectures, 2 lectures/week
Aims
The aims of the course are to:
- Show how the concepts of kinematics are applied to rigid bodies.
- Explain how Newton's laws of motion and the equations of energy and momentum are applied to rigid bodies.
- Develop an appreciation of the function, design and schematic representation of mechanical systems.
- Develop skills in modelling and analysis of mechanical systems, including graphical, algebraic and vector methods.
- Show how to model complex mechanics problems with constraints and multiple degrees of freedom.
- Develop skills for analyzing these complex mechanical systems, including stability, vibrations and numerical integration.
Objectives
As specific objectives, by the end of the course students should be able to:
- Specify the position, velocity and acceleration of a rigid body using > graphical, algebraic and vector methods.
- Understand the concepts of relative velocity, relative acceleration and instantaneous centres of rigid bodies.
- Apply Newton's laws and d'Alembert's principle to determine the acceleration of a rigid body subject to applied forces and couples, including impact in planar motion.
- Determine the forces and stresses in a rigid body caused by its motion.
- Apply Lagrange's equation to the motion of particles and rigid bodies under the action of conservative forces
- Identification of equilibrium points, and linearization around equilibrium points
- Linearization around equilibrium points to extract stability information, vibrational frequencies and growth rates.
- Use of the "Effective potential'' when J_z is conserved.
- Understand chaotic motion as observed in simple non-linear dynamics systems
- Understand simple gyroscopic motion.
Content
Introduction and Terminology
Kinematics
- Differentiation of vectors (4: pp 490-492)
- Motion of a rigid body in space (3: ch 20)
- Velocity and acceleration images (1: p 124)
- Acceleration of a particle moving relative to a body in motion (2: pp 386-389)
Rigid Body Dynamics
- D'Alembert force and torque for a rigid body in plane motion (4: pp 787-788)
- Inertia forces in plane mechanisms (1: pp 200-206)
- Method of virtual power (4: pp 429-432)
- Inertia stress and bending (1) Ch 5
Lagrange's Equation
- Introduction to Lagrange's Equation (without derivation)
- Concept of conservative forces
- Application to the motion of particles and rigid bodies under the action of conservative forces
Non-linear dynamics
- Solution of equations of motion for a double pendulum
- Illustration of motion on a phase plane
- Concept of chaos and the sensitivity to initial conditions
Gyroscopic Effect
- Introduction to gyroscopic motion (2: pp 564-571)
REFERENCES
(1) BEER, F.P. & JOHNSTON, E.R. VECTOR MECHANICS FOR ENGINEERS: STATICS AND DYNAMICS
(2) HIBBELER, R.C. ENGINEERING MECHANICS – DYNAMICS (SI UNITS)
(3) MERIAM, J.L. & KRAIGE, L.G. ENGINEERING MECHANICS. VOL.2: DYNAMICS
(4) PRENTIS, J.M. ENGINEERING MECHANICS
Booklists
Please see the Booklist for Part IB Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
Last modified: 12/11/2018 21:13